Quality of Life and Community

Measuring parks acres per 1,000 population

This goal is measured by tracking neighborhood parks acres per 1,000 population.Explore the data
parks acres per 1,000 population
Final
parks acres per 1,000 population
Dec 2016 Target
Goal Period ended December 2016

            Why is this goal important?

            Neighborhood parks directly influence residents good feelings about their quality of life. These parks are typically walk-to facilities that provide play and passive recreation for the immediate vicinity. They often contain playground equipment, picnic tables, open turf areas, multi-use paths and sometimes natural areas are incorporated in the design. We call these sites with natural elements "hybrid" neighborhood parks.

            How is this goal measured?

            The current total acreage of our neighborhood parks is 25 acres, The total number of neighborhood parks is 19. This equates to a level of service (LOS) of 2.2 acres of neighborhood park land per every thousand residents in Carson City. This does not include Mills Park, Carson City Fairgrounds, Fuji Park and the three large sports complexes.

            What progress are we making towards this goal?

            Based on the overall growth projections for the City, we will be:

            • Monitoring key demographic indicators from local, reliable sources to enable more accurate projections of future needs.
            • Conservative (in excess of projected needs) in obtaining park and recreation land resources in order to have flexibility to respond to changing circumstances in the future.
            • Obtaining land for future recreation needs. The City will look first to public land, then to private land, except where location criteria dictate otherwise.
            • Incorporating cultural and bilingual aspects into the City’s recreational programming.
            • Reaching out and incorporate Carson City’s minority populations into youth and adult sports organizations.

      Data Governance

      describes the quality of the data itself. Governance issues generally indicate that the data source is considered incomplete or unreliable.

      Model Health

      describes the quality of the predictive model. If the model health is poor, the trend prediction should not be trusted.

      eyJzdGF0dXMiOjIwMCwiZGF0YSI6eyJuYW1lIjoiUGVyZm9ybWFuY2UgQ2Fyc29uIENpdHkgRGFzaGJvYXJkIiwibWV0YWRhdGEiOiJ7XCJpbWFnZVwiOlwiL2FwaS9hc3NldHMvN0MwNjg1QUItN0JGMS00NDYzLTg4NEUtNTQ1OUIzOTBEOUQxXCIsXCJkZXNjcmlwdGlvblwiOlwiIyAqKlBlcmZvcm1hbmNlIENhcnNvbiBDaXR5IGlzIGEgZGF0YSBkcml2ZW4gYXBwcm9hY2ggdG8gaW1wcm92ZSBjaXR5IHNlcnZpY2VzLiBZb3UgY2FuIG1vbml0b3IgQ2Fyc29uIENpdHkncyBwcm9ncmVzcyBvbiB0aGlzIHNpdGUuKipcXG5cXG5QZXJmb3JtYW5jZSBDYXJzb24gQ2l0eSBmb2N1c2VzIG9uIG1vbml0b3JpbmcgdGhlIENpdHkncyBwcm9ncmVzcyB0b3dhcmQgaXRzIEZpdmUtWWVhciBTdHJhdGVnaWMgUGxhbi4gVGhlIHBsYW4gaXMgb3JnYW5pemVkIGFyb3VuZCBzaXggc3RyYXRlZ2ljIGdvYWxzIGFkb3B0ZWQgYnkgdGhlIE1heW9yIGFuZCB0aGUgQm9hcmQgb2YgU3VwZXJ2aXNvcnMsIHdoaWNoIGFyZSBvdXRsaW5lZCBiZWxvdy4gVGhpcyBzaXRlIHByb3ZpZGVzIGFuIFxcXCJhdC1hLWdsYW5jZVxcXCIgdmlldyBvZiB0aGVzZSBnb2FscyBhbmQgb2JqZWN0aXZlcy4gQ2xpY2tpbmcgb24gYSB0aWxlIHRlbGxzIHlvdSB0aGUgZnVsbCBzdG9yeSBmb3IgdGhhdCB0b3BpYyBhcmVhIGFuZCB0aGUgb2JqZWN0aXZlcyB3aXRoaW4gaXQuIFRoZSB2aXN1YWxpemF0aW9ucyBvbiB0aGlzIHNpdGUgYXV0b21hdGljYWxseSB1cGRhdGUgdG8gcmVmbGVjdCB0aGUgbW9zdCByZWNlbnQgZGF0YS5cXG5cXG5JZiB5b3UgaGF2ZSBhbnkgcXVlc3Rpb25zIG9yIGNvbW1lbnRzIGFib3V0IHRoZSBkYXNoYm9hcmQsIHBsZWFzZSBzaGFyZSB0aGVtIHdpdGggdXMgdmlhIGVtYWlsIGF0IHBlcmZvcm1hbmNlQGNhcnNvbi5vcmcgb3Igb24gVHdpdHRlciBAY2Fyc29uY2l0eWdvdiAjUGVyZm9ybWFuY2VDYXJzb25DaXR5LlxcblxcblwifSIsImNhdGVnb3JpZXMiOlsiYjltbi1hNnhnIiwiOGJuZS1qcmppIiwiYWd5NC1yZ3V3IiwiY2JoNS1qdXl3IiwiZ21lNi12ZmI5IiwiNzdtbi1tZWV6Il0sImlzX3B1YmxpYyI6dHJ1ZSwidmVyc2lvbiI6IjIwMTctMDItMDlUMjA6MTA6MjkuMzcxWiIsImRlbGV0ZWRfZ29hbHMiOlsiM2R0cS1iYnBnIl0sImlkIjoicGdmdC04dnE0In19
      eyJzdGF0dXMiOjIwMCwiZGF0YSI6eyJuYW1lIjoiUXVhbGl0eSBvZiBMaWZlIGFuZCBDb21tdW5pdHkiLCJnb2FscyI6WyJwcGVnLWl2YmoiLCJhdTgyLTJreWQiLCI2N2NkLXl6aGciLCJybmprLTMzZzYiLCIyanVlLTVlNHoiLCJyZmh1LXc0ZjUiLCJ2NWRjLWt2azgiLCJwd2ZrLWR4dXYiLCJ1OGVlLWF2Y2ciXSwidmVyc2lvbiI6IjIwMTYtMDUtMjdUMTY6MDE6MzIuMDU5WiIsImlkIjoiY2JoNS1qdXl3In19
      eyJzdGF0dXMiOjIwMCwiZGF0YSI6eyJpZCI6InBwZWctaXZiaiIsIm5hbWUiOiJOZWlnaGJvcmhvb2QgUGFya3MiLCJpc19wdWJsaWMiOnRydWUsIm1ldGFkYXRhIjp7Im1ldGFkYXRhIjoie1wicmV0aXJlbWVudF9uYXJyYXRpdmVcIjpbXSxcImljb25cIjpcInRyZWVcIixcIm5hcnJhdGl2ZVwiOlt7XCJ0eXBlXCI6XCJ0d29Db2xMYXlvdXRcIixcImNvbHVtbnNcIjpbW3tcInR5cGVcIjpcInRleHRcIixcInRleHRcIjpcIiMgV2h5IGlzIHRoaXMgZ29hbCBpbXBvcnRhbnQ/XFxuXFxuTmVpZ2hib3Job29kIHBhcmtzIGRpcmVjdGx5IGluZmx1ZW5jZSByZXNpZGVudHMgZ29vZCBmZWVsaW5ncyBhYm91dCB0aGVpciBxdWFsaXR5IG9mIGxpZmUuIFRoZXNlIHBhcmtzIGFyZSB0eXBpY2FsbHkgd2Fsay10byBmYWNpbGl0aWVzIHRoYXQgcHJvdmlkZSBwbGF5IGFuZCBwYXNzaXZlIHJlY3JlYXRpb24gZm9yIHRoZSBpbW1lZGlhdGUgdmljaW5pdHkuIFRoZXkgb2Z0ZW4gY29udGFpbiBwbGF5Z3JvdW5kIGVxdWlwbWVudCwgcGljbmljIHRhYmxlcywgb3BlbiB0dXJmIGFyZWFzLCBtdWx0aS11c2UgcGF0aHMgYW5kIHNvbWV0aW1lcyBuYXR1cmFsIGFyZWFzIGFyZSBpbmNvcnBvcmF0ZWQgaW4gdGhlIGRlc2lnbi4gV2UgY2FsbCB0aGVzZSBzaXRlcyB3aXRoIG5hdHVyYWwgZWxlbWVudHMgXFxcImh5YnJpZFxcXCIgbmVpZ2hib3Job29kIHBhcmtzLiBcXG5cXG4gXCJ9LHtcInR5cGVcIjpcInRleHRcIixcInRleHRcIjpcIiMgSG93IGlzIHRoaXMgZ29hbCBtZWFzdXJlZD9cXG5cXG5UaGUgY3VycmVudCB0b3RhbCBhY3JlYWdlIG9mIG91ciBuZWlnaGJvcmhvb2QgcGFya3MgaXMgMjUgYWNyZXMsIFRoZSB0b3RhbCBudW1iZXIgb2YgbmVpZ2hib3Job29kIHBhcmtzIGlzIDE5LiBUaGlzIGVxdWF0ZXMgdG8gYSBsZXZlbCBvZiBzZXJ2aWNlIChMT1MpIG9mIDIuMiBhY3JlcyBvZiBuZWlnaGJvcmhvb2QgcGFyayBsYW5kIHBlciBldmVyeSB0aG91c2FuZCByZXNpZGVudHMgaW4gQ2Fyc29uIENpdHkuIFRoaXMgZG9lcyBub3QgaW5jbHVkZSBNaWxscyBQYXJrLCBDYXJzb24gQ2l0eSBGYWlyZ3JvdW5kcywgRnVqaSBQYXJrIGFuZCB0aGUgdGhyZWUgbGFyZ2Ugc3BvcnRzIGNvbXBsZXhlcy5cXG5cXG4gXCJ9XSxbe1widHlwZVwiOlwidGV4dFwiLFwidGV4dFwiOlwiIyBXaGF0IHByb2dyZXNzIGFyZSB3ZSBtYWtpbmcgdG93YXJkcyB0aGlzIGdvYWw/XFxuXFxuQmFzZWQgb24gdGhlIG92ZXJhbGwgZ3Jvd3RoIHByb2plY3Rpb25zIGZvciB0aGUgQ2l0eSwgd2Ugd2lsbCBiZTpcXG5cXG4qIE1vbml0b3Jpbmcga2V5IGRlbW9ncmFwaGljIGluZGljYXRvcnMgZnJvbSBsb2NhbCwgcmVsaWFibGUgc291cmNlcyB0byBlbmFibGUgbW9yZSBhY2N1cmF0ZSBwcm9qZWN0aW9ucyBvZiBmdXR1cmUgbmVlZHMuXFxuKiBDb25zZXJ2YXRpdmUgKGluIGV4Y2VzcyBvZiBwcm9qZWN0ZWQgbmVlZHMpIGluIG9idGFpbmluZyBwYXJrIGFuZCByZWNyZWF0aW9uIGxhbmQgcmVzb3VyY2VzIGluIG9yZGVyIHRvIGhhdmUgZmxleGliaWxpdHkgdG8gcmVzcG9uZCB0byBjaGFuZ2luZyBjaXJjdW1zdGFuY2VzIGluIHRoZSBmdXR1cmUuXFxuKiBPYnRhaW5pbmcgbGFuZCBmb3IgZnV0dXJlIHJlY3JlYXRpb24gbmVlZHMuIFRoZSBDaXR5IHdpbGwgbG9vayBmaXJzdCB0byBwdWJsaWMgbGFuZCwgdGhlbiB0byBwcml2YXRlIGxhbmQsIGV4Y2VwdCB3aGVyZSBsb2NhdGlvbiBjcml0ZXJpYSBkaWN0YXRlIG90aGVyd2lzZS5cXG4qIEluY29ycG9yYXRpbmcgY3VsdHVyYWwgYW5kIGJpbGluZ3VhbCBhc3BlY3RzIGludG8gdGhlIENpdHnigJlzIHJlY3JlYXRpb25hbCBwcm9ncmFtbWluZy5cXG4qIFJlYWNoaW5nIG91dCBhbmQgaW5jb3Jwb3JhdGUgQ2Fyc29uIENpdHnigJlzIG1pbm9yaXR5IHBvcHVsYXRpb25zIGludG8geW91dGggYW5kIGFkdWx0IHNwb3J0cyBvcmdhbml6YXRpb25zLlxcblwifSx7XCJ0eXBlXCI6XCJ0ZXh0XCIsXCJ0ZXh0XCI6XCIjIEZPUiBNT1JFIElORk9STUFUSU9OOlxcblxcbltDbGljayBoZXJlIGZvciBtb3JlIGluZm9ybWF0aW9uIG9uIHBhcmtzIGFuZCBsb2NhdGlvbiBpbmZvcm1hdGlvbl1bMF0uXFxuXFxuWzBdOiBodHRwOi8vY2Fyc29uLm9yZy9nb3Zlcm5tZW50L2RlcGFydG1lbnRzLWctei9wYXJrcy1yZWNyZWF0aW9uLW9wZW4tc3BhY2UvcGFya3MtYW5kLW9wZW4tc3BhY2VcIn1dXX1dLFwidXNlX2N1c3RvbV90aXRsZVwiOnRydWUsXCJjdXN0b21fdGl0bGVcIjpcIk1lYXN1cmluZyBwYXJrcyBhY3JlcyBwZXIgMSwwMDAgcG9wdWxhdGlvblwiLFwidXNlX2N1c3RvbV9zdWJ0aXRsZVwiOnRydWUsXCJjdXN0b21fc3VidGl0bGVcIjpcIlRoaXMgZ29hbCBpcyBtZWFzdXJlZCBieSB0cmFja2luZyBuZWlnaGJvcmhvb2QgcGFya3MgYWNyZXMgcGVyIDEsMDAwIHBvcHVsYXRpb24uXCJ9In0sInByZXZhaWxpbmdfbWVhc3VyZSI6eyJzdGFydCI6IjIwMTQtMTItMzFUMDA6MDA6MDAuMDAwIiwiZW5kIjoiMjAxNi0xMi0zMVQyMzo1OTo1OS4wMDAiLCJ1bml0IjoicGFya3MgYWNyZXMgcGVyIDEsMDAwIHBvcHVsYXRpb24iLCJ0YXJnZXRfdHlwZSI6Im5vbmUiLCJ0YXJnZXRfZGVsdGFfaXNfcGVyY2VudCI6ZmFsc2UsIm1ldHJpYyI6eyJtZXRhZGF0YSI6IiIsImlkIjoianp0Yi0zYjM2In0sImNvbXBhcmlzb24iOnsiY29tcGFyaXNvbl9mdW5jdGlvbiI6Ij4ifSwibWV0YWRhdGEiOnsibWV0YWRhdGEiOiJ7XCJlZGl0XCI6e1wic3RhcnRcIjp7XCJkYXRlXCI6XCJlbmRcIixcIm1vbnRoXCI6XCJ5ZWFyXCIsXCJ5ZWFyXCI6MjAxNH0sXCJlbmRcIjp7XCJkYXRlXCI6XCJlbmRcIixcIm1vbnRoXCI6XCJ5ZWFyXCIsXCJ5ZWFyXCI6MjAxNn0sXCJhY3Rpb25fdHlwZVwiOlwibm9uZVwifSxcImJhc2VsaW5lXCI6e1wic3F1aXNoeVwiOntcInN0YXJ0XCI6e1wiZGF0ZVwiOlwic3RhcnRcIixcIm1vbnRoXCI6XCJ5ZWFyXCIsXCJ5ZWFyXCI6MjAxNn0sXCJlbmRcIjp7XCJkYXRlXCI6XCJzdGFydFwiLFwibW9udGhcIjpcInllYXJcIixcInllYXJcIjoyMDE2fX0sXCJzdGFydFwiOlwiMjAxNi0wMS0wMVQwMDowMDowMC4wMDBcIixcImVuZFwiOlwiMjAxNi0wMS0wMVQyMzo1OTo1OS4wMDBcIixcIm1ldHJpY1wiOntcIm1ldGFkYXRhXCI6XCJ7XFxcIndpemFyZFxcXCI6e1xcXCJmaWx0ZXJfYXN0XFxcIjpbe1xcXCJ2YWx1ZXNcXFwiOlt7fV19XX19XCJ9fSxcIm5hbWVcIjpcInBhcmtzIGFjcmVzXCIsXCJ5U2NhbGVcIjp7XCJ1c2VfZGVmYXVsdFwiOmZhbHNlLFwibWF4XCI6NX19In0sImNyZWF0ZWRfYXQiOiIyMDE2LTA1LTIwVDIzOjM4OjU1LjAwOVoiLCJ2ZXJzaW9uIjoiMjAxNi0wNS0yMFQyMzozODo1NS4wMDlaIiwiaWQiOiI0bmltLXdidmQifSwicmVsYXRlZF9tZWFzdXJlcyI6W10sImJhc2VfZGFzaGJvYXJkIjoicGdmdC04dnE0IiwidXBkYXRlZF9hdCI6IjIwMTYtMDctMjZUMjI6MzI6MDcuNTg5WiIsImNyZWF0ZWRfYXQiOiIyMDE2LTA1LTIwVDIzOjM4OjU1LjE1N1oiLCJ2ZXJzaW9uIjoiMjAxNi0wNy0yNlQyMjozMjowNy41ODlaIiwiY3JlYXRlZF9ieSI6InhqYmstdTk0NiJ9fQ==
      eyJzdGF0dXMiOjQwNCwiZGF0YSI6eyJjb2RlIjoibm90X2ZvdW5kIiwiZXJyb3IiOnRydWUsIm1lc3NhZ2UiOiJVc2VyIG5vdCBmb3VuZCJ9fQ==
      eyJzdGF0dXMiOjIwMCwiZGF0YSI6eyJjb21wdXRlIjp7ImFnZ3JlZ2F0aW9uX2Z1bmN0aW9uIjoibW9zdF9yZWNlbnQifSwiZGF0ZV9jb2x1bW4iOiJ5ZWFyIiwidmVyc2lvbiI6IjIwMTYtMDYtMTNUMTc6MjY6MTcuODk0WiIsImlkIjoianp0Yi0zYjM2IiwiY29sdW1uMSI6InBhcmtzX2FjcmVzX3Blcl8xXzAwMCIsImRhdGFzZXQiOiJyZ25mLWQ0aWciLCJtZXRhZGF0YSI6IntcIndpemFyZFwiOntcImZpbHRlcl9hc3RcIjpbe1widmFsdWVzXCI6W3t9XSxcImRhdGFzZXRcIjpcInJnbmYtZDRpZ1wifV0sXCJ2YWx1ZVR5cGVcIjpcIm9uZVwifX0iLCJkYXRhc2V0X2RvbWFpbiI6InBlcmZvcm1hbmNlLmNhcnNvbi5vcmciLCJjcmVhdGVkX2F0IjoiMjAxNi0wNS0yMFQyMzozODo1NC44NDhaIiwidXBkYXRlZF9hdCI6IjIwMTYtMDYtMTNUMTc6MjY6MTcuODk0WiJ9fQ==
      eyJzdGF0dXMiOjIwMCwiZGF0YSI6W119
      eyJzdGF0dXMiOjQwMywiZGF0YSI6eyJjb2RlIjoiYXV0aGVudGljYXRpb25fcmVxdWlyZWQiLCJlcnJvciI6dHJ1ZSwibWVzc2FnZSI6IllvdSBtdXN0IGJlIGxvZ2dlZCBpbiB0byBhY2Nlc3MgdGhpcyByZXNvdXJjZSJ9fQ==